
SDSLH
A Decoupled, Protocol-Driven
Framework for Enhanced Rexx

Syntax Highlighting Across Editors

Adrian Sutherland
REXX Symposium, Vienna

Why Syntax Highlighting Matters
Syntax highlighting is essential for modern code editors and IDEs.

It's not just aesthetic; it significantly boosts developer productivity
and code quality.

Enhances code comprehension by visually structuring text.

Aids faster navigation and quicker identification of code elements.

Reduces cognitive load.

Helps detect syntax errors early, improving maintainability and
reducing debugging time.

Transforms plain text into a more accessible representation of code
logic

The Challenge: Diverse Ecosystems
Implementing accurate, performant, and
maintainable syntax highlighting is
challenging.

Challenges amplified by complex grammars,
numerous dialects, or domain-specific
extensions.

Significant burden: reimplementing
highlighting logic for each editor platform with
proprietary APIs.

Many Language Engineers become
disappointed that their language processor
does not really support highlighting -
typically too laggy

Rexx Ecosystem Challenges
Rexx, with its decades of evolution, exemplifies these challenges.

Multiple variants and implementations (Classic, ooRexx, NetRexx).

Diversity combined with wide array of platforms and editors creates a
complex tooling ecosystem.

Existing Rexx tools often have limitations in highlighting capabilities.

Issues include incorrect highlighting with themes, mixed-case
keywords, incomplete error detection, and lack of support for
includes/embedded languages.

Interpreter diversity (Regina, ooREXX, Netrexx, Regina, cREXX, BREXX)
adds complexity.

Certain editors (like THE, modeled after XEDIT/KEDIT) are historically
significant.

Developing distinct plugins for each editor-variant combination is a
substantial overhead

Introducing SDSLH: The Decoupled Approach
Simple DSL Syntax Highlighter (SDSLH)
framework addresses cross-editor
highlighting complexities.

Novel decoupled architecture.

Language-specific highlighter process
communicates with editors via a
standardised, lightweight protocol.

Aims for consistent, high-quality, efficient
highlighting across multiple editors.

Offers specific applicability and benefits for
the Rexx ecosystem.

Architecture Overview & Motivation
Core concept: separate complex parsing (highlighter) from
editor display/interaction (editor).

Highlighter process runs dedicated for each session/file
type.

Editor (client) launches process and communicates via
stdin/stdout.

Highlighter (server) processes code and returns token info.

Motivation:

● Leverage existing parsers (Bespoke, ANTLR, Lemon,
reusing existing parsers like TUTOR, Regina, BREXX).

● Simplify editor integration via a single protocol.

● Improve quality & consistency through centralized,
deeper analysis.

● Efficiency via delta updates for incremental changes.

Detailed Architecture: Process Model & Buffer
Process Model: Editor launches highlighter process on
file open. Communication over stdin/stdout. Editor
manages lifecycle.

Shared Buffer Concept: Both editor and highlighter
maintain a synchronized copy of the document buffer.

Editor sends delta updates to the highlighter.

Highlighter applies deltas to stay consistent.

Synchronization using version numbers or
timestamps.

Shared
Distributed

Buffer

Editor

Highlighter

Deltas

Deltas

Detailed Architecture: Deltas & Emergency Highlighting
● Delta Updates: Cornerstone of efficiency.

● Editor sends only incremental changes (Transactions).

○ Bundled into DELTA messages with position and
content details.

○ Minimizes data transfer.

○ Difference detection (e.g., Myers Diff) for large pastes.

● Emergency Highlighting: Editor applies quick local
rules immediately on edit.

○ Provides instant visual feedback.

● Replaced by accurate data from SDSLH process when
received.

○ Reconciliation handles user edits during
request-response cycle.

Detailed Architecture: Robustness & Generalizability
Robustness: External process failure doesn't crash
the editor.

Editor is insulated and can fall back to emergency
highlighting.

Contrasts with tightly integrated plugins.

Generalizability: Architecture is language-agnostic.

Protocol and editor integration patterns reusable
for other languages by substituting backend.

The SDSLH Protocol: Lightweight & Text-Based
Communication governed by the SDSLH protocol.

Rationale: Simplicity for C/C++ backend implementation.

Plain text parsing using basic string manipulation.

HTTP-like structure: headers and optional body.

Well-understood and extensible format.

Message Format:

● <Command> <Resource> SDSLH/1.0
● Header: Value pairs
● Blank line separates headers from body
● Content-Length: <length> (mandatory)
● `` (payload)

SDSLH Protocol: Key Commands & Headers
Key Commands

● INIT: Establish session, send initial
state.

● DELTA: Transmit incremental
changes (transactions).

● HIGHLIGHT: Request/provide token
data.

● ACK: Acknowledge message
processing.

● ERROR: Communicate parsing or
protocol errors.

● PING: Keep-alive mechanism.

Essential Headers

● Content-Length: Body size in bytes.

● Content-Type: Body format (e.g.,
application/rexx-tokens-v1).

● Range: Character or line range.

● Timestamp / Version: Synchronization
and ordering.

Text-based trade-offs: potentially less
performant than binary, but simpler C (and
other languages like REXX and JavaScript)
implementation.

Flexibility for future enhancements via new
headers/content types.

SDSLH Protocol: Data Structures
Message body format depends on Content-Type.

Highlight Tokens

● Sequence of tokens in HIGHLIGHT
responses.

● Includes type (KEYWORD, STRING_LITERAL,
COMMENT, etc.), start/end position.

● Generic types for editor mapping to styles.

AST Markers

● Zero-length tokens like TREE_UP,
TREE_DOWN for structural info.

● Indicate entry/exit from syntactic
constructs.

● Allows editors to reconstruct AST
representation, e.g. for code folding

 Error Tokens

● Special ERROR token marks error
location.

● Accompanied by structured error details
(severity, code, message).

● Editor displays diagnostics.

 Support Tool for Language Engineers

● Tool (Tree Walker) to convert an AST
“back” into a Parse Tree needed for
syntax highlighting

SDSLH Protocol: AST to Parse Tree tool

Since ASTs often omit non-essential tokens,
these helper functions manage the complexity of
rebuilding a complete token stream for
highlighting and analysis.

Protocol Workflow
Initialization (INIT): Editor launches process, sends initial state; highlighter
initializes buffer.

Editing (DELTA): Editor captures edits as Transactions, updates local buffer, sends
DELTA messages with timestamps/versions.

Emergency Highlighting: Editor applies quick local rules immediately.

Highlight Request (HIGHLIGHT): Editor requests updated highlighting for a range.

Processing: Highlighter reads DELTA, applies changes, parses affected region,
generates tokens.

Highlight Response (HIGHLIGHT): Highlighter formats token data, sends response
(minimal range).

Acknowledgement (ACK): Optional ACK confirms DELTA processing.

Integration & Reconciliation: Editor reads responses, updates display, reconciles
with subsequent local edits.

Error Handling (ERROR): Highlighter includes ERROR tokens/messages; editor
displays diagnostics.

Synchronization: Timestamps/versions correlate changes and handle out-of-order
messages.

Robustness: ERROR command and PING for health checks; timeouts for
unresponsiveness

SDSLH for the Rexx Ecosystem: Pluggable Backends
Decoupled architecture is key to supporting Rexx
diversity.

Different parser implementations can be distinct
highlighter processes or modules.

Example 1: Classic Rexx: Leverage BREXX (or Regina)
parser components for high-fidelity highlighting.

Example 2: cREXX: Adapt C/Lemon backend for
nuances of cREXX (and RXAS)

Example 3: ooRexx/NetRexx: Reuse of existing parsers
(maybe TUTOR), or distinct grammars (e.g. ANTLR).

Feasibility PoC (and working example) of BREXX reuse is a
key next step for the C backend

SDSLH for the Rexx Ecosystem: Integration with THE
THE (The Hessling Editor) is significant in the
Rexx world (XEDIT heritage, Rexx macros).

Proposed Integration: A SDSLH plugin can link
against REXX (or other languages like RXAS).

Initially a MVP, but potentially a generic THE
capability.

User ecosystem also leverage THE's macro
system capabilities.

Proof-of-concept with THE will be a faster to
deliver demo target over Netbrains / VSCode etc.

SDSLH for the Rexx Ecosystem: Handling Rexx Nuances
Full parser backend handles Rexx's specific features accurately.

Correctly handles free-form and case-insensitivity.

Distinguishes keywords vs. variables through contextual analysis.

Identifies and highlights compound variables/stems (e.g.,
myStem.index.value).

Accurate tokenization of comments, strings, numbers, operators.

Identifies INTERPRET keyword and expression (though full
dynamic highlighting is hard).

Leveraging REAL parsers mean syntax highlighting is “gold
standard”

Implementation Strategy: Backends
Reuse

● Rationale: Leverage existing proven impentations

● Process: Take existing Parsers and integrate to the SDSLH client library. This
may mean improving resyncing after error detection to allow the
highlighting to continue after a syntax error

Go/ANTLR Backend

● Rationale: Performance, concurrency, excellent tooling in Go; powerful
ANTLR parser generation.

● Process: Define ANTLR grammars, generate Go parser code, implement
SDSLH protocol logic (read DELTA, parse, format/send HIGHLIGHT).

C/Lemon Backend

● Rationale: Minimalism, portability, ease of integration in C; compact Lemon
LALR(1) parser; simple protocol handling avoids complex libs.

● Process: Define Lemon grammar, generate C parser, implement SDSLH
protocol logic (manage I/O, parse messages, invoke parser, generate
output).

Implementation Strategy: Editor Integration Approaches
Direct Protocol Support

Editor/plugin implements SDSLH client directly (e.g., via external process
APIs). THE is a candidate.

JetBrains Plugin

Challenge: Conforming to JetBrains PSI/AST architecture. SDSLH token
stream doesn't directly match.

Solution: Plugin manages SDSLH process, parses responses (including
AST markers), reconstructs PSI-like structure. Requires careful
asynchronous handling.

LSP Wrapper

Purpose: Grant compatibility with large ecosystem of LSP-capable
editors (VS Code, Neovim, Sublime Text, Eclipse). Avoids bespoke
plugins per editor.

Implementation: Standalone app acts as LSP server to editor, SDSLH
client to highlighter. Translates LSP requests to SDSLH commands and
vice-versa. Manages state synchronization.

Project Status: Work-In-Progress
SDSLH is in design and early implementation stages.

Core architecture and protocol defined.

MVP/PoC Library, and demo Parser and Editor in
development.

Full implementations of backends and integrations
will start once MVP Library is finalised

Symposium Scope

● Live demo milestone was missed!
● Presentation focuses on design merits, protocol

details, workflow, potential benefits for Rexx.

Presenting WIP for early feedback and collaboration.

Future Directions & Call for Collaboration
Future Enhancements

● Complete backend implementations (Go/ANTLR, C/Lemon, TUTOR).

● Develop and release editor integrations (JetBrains plugin, LSP wrapper, THE direct).

● Expand features beyond basic highlighting (code completion, linting, detailed error
reporting).

● Broaden language support (additional Rexx variants, other DSLs).

● Foster community: open-source protocol and reference implementations.

● Engage with Rexx community (RexxLA) for feedback and contributions.

SDSLH design holds potential for improving Rexx tooling.

Project focus is on simple (but comprehensive) protocols, and promoting implementation and
robustness.

Call for Collaboration

● Discussions on design, Rexx requirements, challenges.

● Collaboration can accelerate development and ensure effectiveness for Rexx
programmers.

Q&A and Thank You!

Questions?

Adrian Sutherland

adrian@sutherlandonline.org

mailto:adrian@sutherlandonline.org

